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I a former Paper which the Royal Society honoured with a
place in the last Volume of their Transactions, I endeavoured
to explain the nature of the calculus of functions, and I pro-
posed means of solving a variety of functional equations con-
taining only one variable quantity. My subsequent enquiries
have produced several new methods of solving these, and
much more complicated functional equations, and have con-
vinced me of the importance of the calculus, particularly as an
instrument of discovery in the more difficult branches of ana-
lysis; nor is it only in the recesses of this abstract science,
that its advantages will be felt : it is peculiarly adapted to the
discovery of those laws of action by which one particle of
matter attracts or repels another of the same or of a different
species ; consequently, it may be applied to every branch
of natural philosophy, where the object is to discover by
calculation from the results of experiment, the laws which
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180 M. BABBAGE’s essay towards

regulate the action of the ultimate particles of bodies. To the
accomplishment of these desirable purposes, it must be con-
fessed that it is in its present state unequal ; but should the
labours of future enquirers give to it that perfection, which
other methods of investigation have attained, it is not too
much to hope, that its maturer age shall unveil the hidden laws
which govern the phenomena of magnetic, electric, or even
of chemical action. -

When functional equations containing two or more variables
occur, their solution presents still greater difficulties than
those we have already considered ; the new relations whic
arise, necessarily require a new notation to distinguish them,
I shall endeavour, as far as I am able, to apply or extend
that already in use; but, as it is almost impossible in the
infancy of a calculus to foresee the extent to which it may be
carried, or the new views which it may be necessary to take
of it, the notation I have used should only be considered as
of a temporary nature ; it may be employed until some more
convenient one be devised: perhaps, however, it might be
more advantageous that it should not be altered uatil our
acquaintance with this subject becomes more intimate, and
until the infinitely varied and comprehensive relations dis=
played in the doctrine of functions, have been more minutely
examined. '

If ¢ be the characteristic of any function of two quantities
z and y, that function is thus denoted ¥ (z,y). Now, if in~
stead of x in this quantity the original function be substituted,
I shall call the result the second function relative to &, and I
shall denote it thus

Y () =0 (4 (@)



the calculus of functions. 181

The first index 2 refers to x, and the second index 1 refers
toy. Similarly if instead of y in the original function, the
function itself had been substituted, the result would have been
the second function relative to y; it would be thus denoted
W (2.9) =4 (2,9 (2,9))

If there are more than two variables in the original function,
they may be arranged in the order in which they are to be ope-
rated on, and the indices will denote the number of operations
to be performed.

Thus M”""‘ (x, 9, %, v,) signifies that in the function

V(x,y,%,v,) we must instead of x substitute the function
itself, and in the result instead of y put the same function,
this latter operation must be repeated, and finally, instead of
v in the last result, put the original function; this last opera-
tion must again be repeated twice. -

There are many cases which this notation does not com-
prehend. If, for example, in the function just proposed, we
wished again to take the function relative to z or y, it would
not be easy to express this. . The method I propose is to have
two ranks of indices, the lower one to distinguish the quanti-
ties operated on ; the upper one to mark the number of ope-
rations performed. According to this method the example

just chosen would be written thus:

2,3 1,4
1,23, 4

V(z,y,%,v)
If only such functions as these occur, we encumber our sym-
bol without any advantage ; if, however, we now wish to per-
form any farther operations, such, for instance, as to take the

second function relative to %, and then the third relative to y,
Bbe
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we have a very convenient mode of doing it ; these operations
would be thus expressed ;

23 1 4 %3
Y (%,

This notation may not appear sufficiently concise to those who
do not consider the very complicated relation expressed by
the above written symbol: it need, however, only be used
in very few cases, and when the lower series of indices is
omitted, it must always be understood, that the quantities
themselves are arranged in the order in which they are to be
operated on. ;

If in a function of two variable ¥ (,y,) we take the se-
cond function relative to z, and then the second function rela-
tive to y, we have

¥ (23) =] (20 (2.9)) Uxy)}
If we take the second function first relative to y, and then
the second relative to x we shall find

$(59) =4 {4 @) b (@ ))]

It appears from this, that the order in which these operations
are performed is not immaterial, as the order in which we dif-
ferentiate a function of two variables, is in the differential cal-
culus.

The two expressions just given are the two second func-
tions of { (z,y), the first taken relative to z and y, and the
second taken relative to y and . But there may be another
second function of ¥ (z, y), which will arise from substituting
at the same time ¥ (z, y) for z, and ¥ (z,y) for y, it will be

Y (Y (29) ¥ (25))
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and may for the sake of distinction be called the second simul-
taneous function relative to x and y ; it differs from the two
preceding ones, and in order to denote it with brevity, I shall
put a line over the two indices thus,

V(@) =Y (), (29))
This method of distinguishing it is equally applicable when
there are more variables. |

There is only one other modification of the symbol denot-
ing function to which I shall at present allude. Suppose (after
any number of operations have been performed on a function
of two variables for example) y becomes equal to z, and the
result only is given : this will naturally be represented in a
manner analogous to that in which EuLer denoted the limits
between-which the integral of a quantity is to be taken.

Thus the equation 4 *(z,y) = fr [y = ] arises from
the following question: What is the form of a function of x
and y, such that taking the second function relative to x, and
then the second relative to y, the result on making y equal to
x shall be a given function of x? |

It might be proposed, that after putting y equal to z, the
whole should be considered merely as a function of z, and
that its »” function should be taken on this hypothesis, and
the result only should be given. |

Such operations I would denote thus :

252\ 2 2,242
1,2

v (5,9) = (2) Ly=e3 or perhaps { 47} @)= @) [y=a]
and in a similar manner all other relations of the same kind
may be expressed.
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I shall give one example which will illustrate these various

modifications of the original functions,
FER )= e
¢zx,yj2?v;=f(&') v;—_ﬁz =«yx]

This equation contains the analytical enunciation of the follow-
ing Problem.
~ What must be the form of a function of four quantities
¥ (2,9, z, v) such that taking the second function relative to z,
the third relative to xz, and the second simultaneous one relative
to y and v: if in the result ax be put for y and gz for v, and
the whole be then considered as a function of x and 2, and if .
on this hypothesis the third function be taken relative to %, and
the second relative to @ ; and if vx be now put for z and the
third function of the expression considered merely as a func-
tion of @ be taken, then it is required that the final result
shall be equal to fx a given function of #?

Symmetrical functions I shall denote as in my former Paper,
by putting a line over the quantities relative to which they

I I

are symmetrical, thus § (z, y, 2, v) is symmetrical relative to
x and y in one sense, and relative to z and v in another.

ProsrLEM 1.

Required the solution of the functional equation
b (2,9) =" (az, By)
To avoid repetition a, 8, ¢, &c. unless otherwise mentioned,
always express known functions, and ¢, J, % are unknown or
arbitrary ones.

Put 4 (z,y,) = ‘Pk(fwa{fys)
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then the given equation becomes
¢ (Jo. 91 =0 (faz: fBY)

Determine f and f from the two equatlonu

Jr =jfax and fy = fo

this may be effected by Prob. L. or IL. of my former Paper,
take any particular solution and ¢ may remain perfectly arbi-
trary ; then the general solution of the problem is

b(z.y) =0 (fnfy)
Ez. 1. Given the equation { (z,y) =1 (—-— z, -;-,-)

here we have f(z)=f( —x), and a particular solution is fr==21*;

a]sof(y) = ( )and a particular case 1sf(y)--y ;"‘

hence the general solution of the equation is

b (zy) =0 (2137
(pbemg perfectly arbitrary.
If we employ the general solutions of the equations

f(x)=f(—x)andf(y) mf(-:;—), we shall still only have one
arbitrary function. In fact, the most general solution of the

equation ¥ (2,y) =3¢ (.-—x, -5-) with which I am at present

\,’ (ny) =20 {—;:;9;,"}}

and this only involves one arbitrary function.

acquainted is
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ProsrLeMm II.

Given the same equation

V(xy) =1 (a2, fy)

Suppose one particular solution of this equation is known,

let it be f(z, y),
then take ¢ (z,y) = o¢f(z,¥), ¢ being perfectly arbitrary
and the given equation becomes

of (#,3) = of (az,fy) |
which is evidently satisfied since f (#,y) = f («x, 8y ) by the
hypothesis.

Ex.1. Let Y (x,y)=1V (‘%’”,};‘;)

one particular solution of this equation is f (z,y) =
hence the general solution is

b (z,5) =0 (215?)
Er. 2. Given the equation Y (z,y) =¥ (27 y*) a particular

log. y

case is f (z,y) = —§— hence the general solution is

b(z,9)=0 (2]
Ez. g. Given the equation ¢ (z, y) =¥ (2% y")
In order to get a particular case let us put
f(x,y)=logtzx4alog’y
by substituting this value we shall find that it is a particular

log. »
log. m’

hence the general solution of the equation is

¢(w,y).._.cp(log ‘z’—log mlog y)-——cp(log —log. n)
(log.y) log:m

solution of the equation, if 2 = —

or changing the value of ¢ it becomes

1 log. m
x!j (w’y) - (-g—eg—%log.n )
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log.
log. y
and if m = -:-;, we have the same solution as in the first.

In these equations the functions have contained the varia-
bles separated ; butit may frequently happen, that they occur
mixed as in the following Problems.

) as in the last example,

Ifn == m wehave (w,y)::q;(

ProsLEM III.
Given the equation
V(2.y)=1(«(25),B (%))
Assume ¥ (z,¥) =0 (f(%y),f (2, y)),and by making

this substitution the equation becomes
o {f (@30S (@:3) =0 {J («(z.9),8@2)f (= (2.5),6(.9)) }

In order to render this equation identical, I determine f and f

from the two following equations:
f(@y)=f(=(2.), B(zy) and f (£.y) =f(«(2.y),8(2.y))
From these it appears, that f and f are merely two particular

solutions of the original equation. If, therefore, we are ac-
quainted with any, the general solution is
b(my) =2 (f (@9):f (%))
If only one particular solution is known, the general one is
V(@y)=0f(2,)
Ewx. 1. Let us examine in what cases we can find the general
solution of the equation
b (my)=d(aryn, 2y)
~ In order to obtain a particular solution, put { (z,y )==z»y*
and making this substitution, we shall find the following equa-
tion of condition among the exponents.
(1=n)(1=—1)="im
MDCCCXVI. Cc
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hence either of thebfollowing equations may be solved gene-
rally,

Mxy)-—-HM = (a)
¢<w,y)~¢{(’},x(%)"} (6)

the solution of the former s { (x,y) = ¢ (zy),and thatof the
latter is § (z,y)=¢ (2"—1y*—1)

In (a) putz =r==—, then the solution of { (., y) =
(Vzy, Vay)is § (2,5) = 0 (29)

In a similar manner it may be found that the solution of

d(z,9) =¥ (=222

i b (zy)=0(2)
As another example take the equation
¥ (2,9)=14(LVL, vV2z))
a particular solution is ¥ (,%) == 2 2y - *, hence the gene-
ral solution is ¢ (x,9) =¢ (2 2y 4 »*), but we may find ano-
ther particular solution of this equation which is totally diffe-
rent from the former, and by combining the two we shall
- obtain a much more general solution. The equation (b) will

coincide with the one under consideration, if we make 7= ——

and r=-—‘- then we shall have for another particular solution
f (%,9) = y‘/ P ,hence a very general solution of the equation
4’(%3’)"‘4’(— \/axy) is

| \If(x,y) o {22y 57=}
¢ remaining perfectly arbitrary.
In the equation of this Problem it may happen that
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« (r,y) does not contain x nor 8 (x, y) contain y, it then be-
comes V(@)=Y (xy, Bz)

This is the case when ¢ (z,y) is required to be a symme-
trical function of x and y, the equation would then become

V(z,9) =¥ (2, 7)
two particular solutions are f (x,y) ==y and f (z,y) = x -y,
hence the general solution of the equation is
V(z,9) =0 (%, 2 +y)

Though these solutions may with propriety be termed general
because they contain an arbitrary function, yet I am by no
means inclined to think them the most general of which the
questions admit, possibly we ought to except the two last equa-
tions, though I shall afterwards show that the solution of an

equation of the form { (z,y)="1 (ax, By) may contain any
number of known functions within the arbitrary one.

ProBLEM 1IV.
Given the equation

V(2,9) =9 (2(29),8(z))
Assume as before ¢ (r,y) =0¢ U‘(x,y),lf(,x,y)), then the

equation will become

o (f(@).f(23))=0{ f(a(@:3), B (2.0))f (2(2:3):8(2.5) }
In order to render this equation identical, determine f and“f

from the two equations

f(@y)=f(a(2,3),6 (zy) andf (z,y) =f(2(2.3),8(2.y))

putting in the first of these « (z,y) for x and B (2,y) fory
we find

fla(z9)B(z)=f{ala(z.y),8(z:5), Bla(z.3),R () }
=f(xy) (1)
Cce
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and we should find a precisely similar equation for determin-
ing f. If we are acquainted with two particular solutions of
this equation, we may from them derive the general solution
of the given equation. If, however, the functions z and 3 are
of such a nature that the two following equations are fulfilled
eq. (1) becomes identical without assigning any particular
value tof or . (The two conditions are « (« (x, y), 8 (%, ))) =z

and B(« (2,5),B8(2,y))=Y)

It may be curious to enquire whether we can discover any
forms which will satisfy these equations, for this purpose let us
assume « (r,y)=a - bxr4-cy,andalso B (z,y) =a-- I‘w+cy,
this will only lead us to a particular solution, but I shall pre-
sently show that it may be rendered general. If the two
conditions already specified are fulfilled, the arbitrary con-
stants will be‘determined, and we shall have the following
equations

a (x, y)——a--{-ba:--]—b"l
ﬁ(x,y)::-l—:z—-bx——by
which may be thus generalised. Let ¢ be any function, and

let o be the inverse of that function, so that ¢p 2=z then the
conditions will be fulfilled, if

g b*—
«(1,9)=0 {a+ b¢w+——’¢y}
and B(x,3)=09 {
Some remarks, however, are necessary on the inverse func-

tion ¢ . If we combine # and constant quantities by any of
the direct operations, addition, multiplication, elevation of
powers, &c. the result which is called a function of x admits
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only of one value, let z equal the function, then we have the
equation £ ==¢x. If from this we endeavour to discover the
value of x in terms of %, the operation is. an inverse one and
z admits of one or more values according to the nature of the
operations denoted by ¢. This number may even be infinite;
if ¢ denotes an equation of the n” degree, there are z values
of z in terins of . It may then be enquired whether in using
the substitution eniployed in the latter part of this Problem,any
of these (perhaps infinite number) may be taken, or whether
only certain particular values should be used ? without attend-
ing to this circumstance, our conclusions may become erro-
neous: all these different values will satisfy the equation
0o =z, but only those must be used which also satisfy the

equation @;x=x: thus if *=¢x =a — 2* we shall have
z=¢ z==+ V a—z if we employ the upper sign we have
| o r=FvVa—(i—2)=+Vr'=zx
If we use the lower one |
¢ pr=—7Va— (¢ —2)=—V2=—z
the upper sign must therefore be taken, because in the latter
part of the Problem we suppose ¢ ¢z==z and ¢ ¢y =3.
This remark, which is of some importance, extends to the
conclusions in my former Paper and to the whole of the
subsequent enquiries.
The equation (1) might be considered as similar to the
~original one, and the same transformation might be performed
en this, and thus we might continue to deduce new conditions.
In the first part we found that the equation {x=1{ax always
admitted of an easy solution when «"x = x and by continuing
the substitutions already pointed out, we should arrive at
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some conclusions very analogous for functional equations of
the form of those treated of in this Problem, but the length
to which these enquiries would lead, render it sufficient merely
to indicate them.

In the equations solved in Problem I. and IL it is obviously
immaterial whether we first put «z instead of z,and then in the
result put By for y or conversely; butin the equation of Pro-
blems III. and IV. the case is different. Ifin the function{(x,y)
we put simultaneously « (z,y) for z, and 8(x,y) fory the
result will be different from that which would arise from
first putting « (x,y) for x and then in the result putting
B(z, ) for y, or from inverting this operation; the three results
stand thus :

J (e (2,9), B(x,y)) (a)
Y (a(x,p(2:3)), B(z))) (b)
P (2 (2,9):8 (@) (¢)

These three functions are evidently different, and in the solu-
tions of the Problems, regard was only had to the first of
them which may be called the simultaneous function. Those,
however, of the second and third class might occur, and it
becomes necessary to point out the means of solution which
are applicable to them.

According to the notaticn laid down, these functions may
be thus expressed

I (2 (2,), B (2,)) (a)
df”( (x,y) B(z,3)) (b
4» ”(w(x ¥)s B(2,3)) (¢)

But to avoid the trouble of indices I shall show how those of
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the second and third class may be reduced to those of the
first, I shall therefore always consider functions of the first
order as simultaneous ones, and omit the indices, which if

supplied, would be »* > ;, &ec.

11

To transform " *(« z, ), B (z,5)) into a function whose
Index is L, bute(z,B(z,y)) =v(z,y) then

1,1

2 (29,8 (29) =" (2 (2).6(5,7))
and similarly if 8 (« (,), 8 (2,7)) =v (%, ) we should have

1!’2, I(“ (2,9),B(%,9)) =" *(e(x,3), v (%,9))
and generally whatever be the number of variables a similar
transformation might be effected.

ProBrLEM V.

Required the solution of the equation.
b (2,9) = A(2,9) ¥ (2(£,9): £ ()
Assume ¢ (2, y) =1 (z,¥) ¢ {f(:c,y),f(x,y)} and sub-
stituting this in the given equation, we find |

F@y) el f (@N).f(23)} =A (20 (2(@) B())
x@{f(«(2,9), 8(2,5)),] (2(2,3), B(2.3)) }

This equation will be satisfied if we are acquainted with par-
ticular solutions of the three following equations

F(23) = A (2,9)f (2(2,9), 8(2.9))
F(8:9) =f2(5,2), 8(2,3)) and f(2,9)=f («(2.9),6(,5))

the first of these is nothing more than the original equation.
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If therefore we know one particular solution of the original
equation, and also one or two particular solutions of the other
equation, we may deduce the general solution of the Problem.

Ezx. Let 1!/‘(.1,',_)’):(-%)3\1/ (9, x)
in this casef(x,y) =f (9, x) and two particular solutions are

j (z,y) = ay and f (m,9)=a+y also a partlcular solution

of the given equation is f (z,y) = }‘f;, hence its general solu-
tion is

b(zy)=5¢(z+y29)

ProsLEM VI
Given the equation
Y(29)=A(29)d(2(2,),B () + B(2.y)
Suppose we are ac uainted with one particular solution
which satisfies the equation and let it be f (x, y ), then assume
(zy)=f(z.y)te(zy)
and making this substitution the equation becomes
S(xy)te(xy)=A(29)f(a(2,)),8(x,3))+A(z,y)
x¢(a(2,5)8(2y)) +B(z,y)

Substlactmg from this the particular solution

J(zy)=A(2,9)f(«(29),8(z,9)) 4+ B(z,y)

there remains

¢ (2,0)=A(2,y) ¢ (a(2:9):8(%:3))
an equation which may be solved by the preceding Problem.,
The same substitution is applicable to the more general equa-
tion

0= (@.9)+A(,3) b (A2, ),8 (@) +B(2,9) b (a(@,3) 8(2,3))+-
&e. 4 K(2y)
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ProsLEm VII.
Given the functions
@ (w,y),ga (2,9), @ (2,5) &ec.
ﬁ(&”,}’),ﬂf(%y):f(w,y) &c.

Required the nature of the function ¢ (#,y) such that it
shall not alter its form by the simultaneous substitution of

«(2,y),B(x,y) for @ and y, and generally that it shall re-
main the same when for # and y are respectively substituted
any of the functions denoted by o (®,y) and B (2,9). The

conditions which determine P may be thus expressed

Y(0) =4 (2(2,9),8 (2:0) =V (2 (2,9), 6 (2,9)) = &e.
Assume d (2,3) =0 {f (@) f(@N} (1)

then from the first condition we have

o {fw)f @)} =0 /(@@ 3), 8@ f (= (@2),8)}

this will be satisfied by making

S (@) =f (2 (@), 8 (@) avd f(@,9) =/ («(@,9),4 (@,)))

these are two particular solutions of the first equation,
The second condition is ¥ (@, y) =¥ («(x,y), B (@,))

which becomes
o F@Df @I =0(f @) B@). [ L®) (2)

where f and f are known functions ; make
; .

f(al‘ (@), .B (#0) =K (2,) andlf(f‘ (w»}’)’P(W’J’))‘—-‘fK(m,y) :

K and 'K are therefore also known functions.

MDCCCXVI, Dd
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Assume ¢ (#,9) =0 ({’ (, y),.vf (2,%)), then equation (2)
becomes

o {[U@y)f @) (fwy)f@)}=e{[K@y) K@),
J(K (@)K (2,9}

This equation must be solved in the same manner as the for-
mer by means of two particular solutions, and by continuing
?he same method, we shall find that the form of the function
+ may be determined by means of en particular solutions of
certain functional equations, when there are 7 pair of conditions
assigned. A less general solution may, however, be found
when we are only acquainted with z particular solutions.

A similar method would lead us to the form of , whatever
might be the number of variables. If, however, we are ac-
quainted with any number of particular solutions which remain
the same, in all the cases assigned by the conditions of the
Problem, we may have the general soluticn by making

v=o{ff si
SoJs . f being it Z particular solutions.

Ex. Let it be required to find a symmetrical function of
x, &, . x, the equations to be satisfied are
\V(w, Zyoody ) = (w, &y .o m,w) = \'/(J},a;’ . .m,w,w) =&c.
T 2 n 2 3 n X 3 4 n P 2
or the whole of the conditions may be more concisely denoted
by the expression
\z/' {x ? 2 ? 3 n }
We may easily find n particular solutions which fulfill these
equations : for in the first place it is evident that the sum of
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any number of quantities is symmetrical with respect to them,
therefore |
flma, .x)=a+4 a4 & 4 =85 ()
Again the sum of their products two by two is also sym-
metrical, therefore

f(x,m,..m)‘:mm+mm+wx+&c.:5(ww)
2 2 ” T2 23 3 r 2

and similarly the sums of their products three by three, four
by four, &c. are symmetrical. 'We may, therefore, find # dif-
ferent particular solutions, and the general solution will be
any arbitrary function of all these particular solutions, or
Y@ D=0 {8 (2),5(a2),.. . S(aw..0)

Instead of taking for particular solutions the sum of all the
quantities, the sum of all the products by two’s, the sum of all
the products by three’s, &c. &c. we might have employed the
sum of all the quantities, the sum of their squares, the sum of
their cubes, &c. but the solution thus deduced would not be
essentially different from the former.

On_functional equations of the second and higher orders involving
lwo or more variables.

The notation to be employed in these enquiries has already
been sufficiently explained, and the different species of second
functions have been noticed. Preserving the same symbols,
let it be required to solve the following Problem.

ProsrEm VIIL
Given the equation

Vi (@y)=w
"This equation though apparently involving two variables
Dde
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may in fact be solved by the methods of the first part; fory
may be considered as a constant quantity, and if in the solution
of @ = @ (Probs. g, 10, and 14, Part 1.) we put arbitrary
functions of y instead of the constant quantities which occur,

we shall have a solution of the given equation, thus a parti-

cular solution of p* v =w isf (#) = —;’Eg% instead of ¢ put % (y)

then a solution of the given equation is
b—x

'4/ (w’.y) = 1—xxy

for
b—x
, T
2,v) = @ —S— = =
V@)= a)),.y) 1 b=x T by v
1—xy

We might also instead of & put any other arbitrary function
of y, and the result will be the same. The equations
V' 2,y)=e(x,y) and §°*(,y) = (2,)
may be treated in a similar manner, in the first y must be con-
sidered as constant, and x must be so treated in the latter.
In general, when functions are taken only relative to one of
the variables, the rules delivered in my former Paper are
sufficient for their solution, such is the equation

Fia,9) 4 @N4" (@), 4" (@)} =0
It might however occur, that though the order of the function
does not vary relative to the other variable, yet that that vari-
able may occur in different forms in each function. An
example will render this more evident #, @, &c. being known
functions, let

FL 2,9, 9 @)% (@ 0), 4" (@, 8y, . . V" (@, 09) }=0

here though the functions do not vary in order relative to y,
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yet they do vary in a certain sense, betause y is differently
contained under each functional characteristic; the method
of treating these kind of equations will be explained hereafter.

ProsrLEm IX.

Given the functional equation
Vo (@,y) =0

This signifies that the second simultaneous function is equal
to zero. It is evident that #—y or y —a will be a particular
solution, for if ¥ (#,y) = @ — y we have
V(@) =4 @), ¥ (@y) = @—y)—(@—y)=0

By observing the process just gone through, it appears that
it would equally succeed if for # we putf () and for y we
put £ (%) for if ¥ (v, 9) =f@ — fy, we have

V@, y) =(foe—f) —(fa—f)=o0

This solution is considerably more general than the former,
yet is by no means the complete solution, a more general one
may be obtained thus: we found one particular solution to be
Y(@,y) =ax =y, now if we multiply the right side of this
equation by an arbitrary function of @ and y the condition will
still be fulfilled; forif ¢ (#,y) = (#—2) ¢ (v,5) we shall find

v @ y)={a=yo(n.)—w—y o(a:9)} x
o {a—ye(@y)a—y e (@)} =0
provided ¢ {:E:—_j YOS TIC y)} does not contain in
its denominator any factor which vanishes.
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ProBLEM X,

Given the equatxonxp (@) =a

In this case the second simultaneous function of @ and y is
constant. The first solution which presents itself is Y(w,y) =
&=y -+ A, then we shall find

i@ =(v—y+A)—(e—y+A) +A=A=a

therefore A==a and one particular solution is

Y@y =u—y+a

This may be rendered more general, nearly in the same
manner as thelastProblem; thuslet 4(x,y) =(@—y) ¢ (,3) 44
then

Vi@ ) =[(@—y o (2,3) + ) —(@—ye (v,9) +a)]x
¢ {w-*_)’ ¢ (2,9) +a,oa—ye(2,y) + a}-]— a=a
Another particular solution which readily occursis

AZ
V(@) =A= thnglVES PP 2(@,y) _AT—— A =a

¥
therefore A=a and a particular solution is

Y@, y) =" or d (w,5) =%

this readily points out anx >1hbr general solution, let

Ap X
y(z,y)v.._A@( )henceqﬁ’ (x,y)=Ap " 3; =A¢(1)=a
)
make A = m and the general solution is

Y@N=5m0(5)

From the combination ¢f the two preceding solutions we
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may obtain another value of ¢ which will also satisfy the given
equation ; it will be

axiaz—yo (=), 0=}
0}

This on trial will be found to agree with the condition, and
x» @ and @ are arbitrary functions

V(@)=

The equation we are considering will also be satisfied by

15 ¢ (%)
making ¥ (x,y) =a (( j or more generaaly by the constant

quantity ¢ multiplied -by any fraction whose numerator and
denominator become equal when x is put for y: such are the
following.

oy 2t 2O AN V5 4 8%y — 5y , &,
¥+ 2x* 233 >4 2x Y& c

ProsrLEM XI.

Given the equition

V(@ y)=ax + by
Assume ¥ (@, y) = pa + qy thén we have
Vo (B g) =p (pr + @)+ ¢ (p2 + @) = (¢ + O (b2 +q)
and V(2 y) = (p+q) (b2 +q¥)

and generally

V@)= + 9" (pr+ gy)
hence p. (p + q)" " '=aand ¢ (p+ ¢)"" = b, which gives for
the values of p and ¢

— 2 d
""‘mn-l and g = —_—n——l

This is'a very limited solution not containing even an arbi-
trary constant, it might easily be rendered more general, but
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the problem itself would scarcely have been worth noticing
had it not been for the very curious results to which it led me.

The relation between ¥ (v, y) = po + ¢y and Yo (x5 %)
=(p+ )"~ (po 4 qy) is very remarkable, it appears from
this, that in the present case in going from the n* to the
n -1 simultaneous function, we have only to multiply by the
sum of the co-efficients of the original function. On enquir-
ing a little more minutely into the cause of this circumstance,
it will be found that it depends on the original function con-
taining @ and y of the same dimensions in all its terms, or
more generally that the expression of { (#, y) is homogeneous.
Let us now assume some homogeneous function, and examine
its second and higher simultaneous functions, let

P (@, y) =aa" 4 by? &P 4 c y! 2" - &e.

thi second simultaneous function is
V@) =a iy (@) "0 Y )" e @) | &
or $33(a, y)= { § (@,9) }"{ apbtec-&e. } =d(1,1) { W) } (@)

If we now take the simultaneous third functions we have
Y3(a, y) == (1,1) [¥2 (2, 5) == ¥ (1, 1) [¥(1,1) (Y (@, y))"]"
hene Jas(a, )= {$(L )} P @)

Repeating the same operation we should have
n+4n*

Fiay={vwm 0} x {Y@n}”
and generally

i+ n+ &c. +nk--z

—_— k—1
\pk’k({lﬁ’:}’)= {\p(x,y)}"x {\f/’(l,l)} ==

—1

ke

={¢(w,y)}”x{¢(1,1)}:5§ (%)
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This elegant property of homogeneous functions will assist
us in solving a variety of equations.

Prosrem XII.
Given the equation '
o b
Y ", y) = aj{gf/ (@,9) }
Determine # from the equation b=n""" and also determinc

el ]

I

¥ (1,1) from the equation{\p (1, 1)}“” =a

Or the given equation will be satisfied by any homogeneous
I

function of the degree indicated by bE—1 provided the sum of
i

fomese i

allits coefficients is equal to the quantity a. 1~&
Ex. Let ¥ 33(2,3) =8 (Y (#,7})"

here b= 4,k =g, therefore nF=r = Wz=b=gandn=—="+2
I

alsoa=8 and ¥ (1,1) =8° =2
therefore any of the following quantities will satisfy the equa-.
tion 2y, &'y, ay4y —ay-42)°

The properties of homogeneous functions are so nearly
connected with the solution of equations containing simulta-
neous functions, that it will be convenient to examine into
them a little farther, and to adopt some means of denoting
them with brevity. In order to signify that a function of
several vaviables has in each of its terms the sum of the
indices of any two of them always the same, I shall make
use of a line placed beneath those two . variables: thus
Y (#,y) signifies an homogencous function of # and y; and

MDCCCXVL, Ee
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as it may be convenient also to denote the sum of the two
indices, I shall place it underneath on the outside of the
parenthesis ; thus then the expression J (@, y) denotes any

. - =’q v

homogeneous function of @ and y of the ¢* degree. A func-
tion of three variables @, y, and 2, may be homogeneous, with
respect to two of them (2 and y) in one sense, and also rela-
tive to y and z in another ; but it does not from thence follow
that it will be homogeneous relative to all three, such a func-
tion would be denoted thus

vz y.2),

a particular case of this ex pressnon 1s_a:“‘ 2 4 ryz=119(2.y, g)z .

This notation being premised, we have the following theorems
relative to homogeneous functions,

V@), =4 L)LY ) T ()

g

k—-l l—n
W)= {4 @] {van™ (2
And generally if we have any homogeneous function of the
n** degree, and instead of x and y we substitute any other func-
tion whatever as ¥ (@, 3), then we shall have the following
equation '

¢{¢(x,y),¢(w,y)} V(1 1) x ¥ ()1 (s)

B (z, y)
Assume (w,y) ¢ {B &, }
call the latter member, for the sake of brevity, K, and take the
second simultaneous function on both sides ; in this case «(z, )

will become (1,1) Kby eq. (), and for the samereason g (ff, Yy )m

will become @ (1, 1) K”, and consequently we shall have
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i, a(1,1) yr t—my fa(x,x) a(29), \P—m
‘q/, (Z:.y)=<p{6(1"—l)K }—_qDIB(I:l) ¢B(f’2)m (41‘)

let 2(1,1) = B (1,1) and also let m =#, then this equation

becomes \p;(w,y) =¢ (1)
this affords another and a more direct solution of Prob. 10.

for if ¢ (x,y)=a, a general solution is

a(x9),

¢ (Jll’:,y) _-¢ (‘) Cp{ﬁ(x,y) }
« (1, 1) being equal to (1, 1), this latter condition, however,
is not absolutely necessary, and if we wish to avoid it, the
general solution will be “ (22 3)

— e N
xp(x,y)— TR} @{B(f’-_y’n}
B (1, 1)
the following is another solutlon of the same question
Assume

[ a+ bx + 02> + &
by + cxy
4 X
cy*
\L(.t,_y) =< a +tbx 4rcx* 4 &c. r=K
by +cxy
z 1 4

xcyz
L 2
taking, the second function on both sides we have

(245 |

b >K + >K=+ &c.

\P‘_’T(x,y) =0 la+|b% ‘c) s
lb X
lLK 4 l}K’--{- &c.
L J 'J J

leta="a bFb="04+"0 cHcdc="ct'cF'c&e.

Fee
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then the equation is reduced to

4o, 9) = (1)
If therefore we assume
a4+ br 4 cx* f &c.)

by cxy
cy*
2
v (JC J’) o (1) ¢< 2t ibx ieat+ &e. e
by  texy '
] xcyz
L * J

the original equation will be satisfied.

I am inclined to think, that this solution is not the most
general of which the Problem admits, even though the series
were continued back, as it might, to negative powers of z
and y. The two solutions which follow are possibly more
general, although on this point I am not certain. It would
indeed be a very important step, if we could assign the number
and nature of the arbitrary functions which enter into the com-
plete solution of functional equations.

Another solution of the equation xp:;’"(x, y)==a may bethus
deduced, let

a (2> y) B(z 1),
(. = bl , &c. L =K
'«Pw,}’) ¢ {f(-x’g) @(x,y) }
then taking the second simultaneous function on both sides,
it will be perceived by the construction of the second side of

the equation, that

%2 e (1, 1) 3(1,‘1) .
\z{ ("t"y):¢{:°‘(hl)’§(l',’l)9 &(u}

call the right side of the equation A, then a very general
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solution of our equation is
' a(z,y) B (2 9)
Ve =gl odn, T g

@ (% 3, B (x y) j
where the numbers m, n, p, &c. are not confined to integers.
Another solution may be found in the following manner:

L (N
ke bma=e(FEh) =K

and determine % so that x (v, ) = x (z, y) when y is made
1 1

equal to @, then taking the second simultaneous functions on
both sides, we have

K, K
V(@) =o0 (’;ﬁK 15) = ¢ (1)
a general solution of the equation in question is- therefore
—_ % (%)
v@N=rm @ (ac(%.ﬂ)
this solution depends on that of the equation
x(@y)=x@y [y=2]

which belongs toa class of equations we shall speak of here-

after. !
Let us now return to the consideration of equation (4) it is

22 _— o (1, 1) (x,y) )]n—m
"!’ (I,}’)-“@{ﬂ(l,l) [ (B(r,y)
for n put 7-4-1 and for m put #, then it becomes

— . : (x:y)
b o e (15 1) n+1
v (‘”’y)"“q){ﬁ(l,l)(p B (%), )}

take the third simultaneous function then

; 2 (1, 1) (1) (2@, =
\!’3 33 (’i’ }’) - q) {B(l: 1) (5(1,,1)©<5 (5’2); )) (5)
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if we suppose « (1, 1) == £ (1, 1) these equations become
(),
RN z(x, )’) —_ @g (@ & y)n+ 1)

b (%),
33 — 3 = =n41
V) =0 ()
and generally we should find
5 (2, 9)
2% — 02y .
\’/ (.22, y) - @ <3 (f’l) > (6)
> Y)
where ¢ (z, y) = (BE"" 2t )and also « (1, 1) =@ (1,1)

A more general expression, and one which contains (b) as &

particular case may be deduced in the following manner.
1

[, 2@, 1"
Let ¢(w’y)~{¢(x,1)@e@,3)m = K

taking the second simultaneous functions on both sides we find
1

Tz _ B(I,I w(l, 1) K» n—m B(1, 1) 1) u(l, 1) o t—m ) =7
”4’2 z(x’y)"" « (1, 1 B(x,x)K’"} = w(bl) B(L D } =

_yBLy)  f(a@1)B,1) @ (%), B(1, 1) “(2),
— ac(x,l)<p B(l,x)a(x,l)@ﬁ(fg)m (1,1) B(xy)

and if we continue to take the succeeding simultaneous func-
tions we shall find generally, that when

1
oy Se@) (2@, e
\ (a,y) = {a(l, 1)@<B(x,y) )}
—
Y —YB( 1) @y \ "™
VPP (2,y)= {a(l’ l)q)P(B(f’.é’)m v

this expression is much more general than the preceding )
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with which it coincides when « (1, 1) = 8 (1, 1) and
n =m -+ 1 by their assistance we may solve a variety of pro-
blems relating to simultaneous functions.

From (b) we have

P @ ( ’y) o (25 3)
V(@)= ntt (=t
V2 (2 y)=¢’ <B(x o ) o0 (B oE )
— ..n-}-l . )
putting in this for ¢ KB ) its value ¥ (@, y) we have

‘1’2’2(“” 3’) = oV (z,y)
from this we may deduce the solution of the following Pro-

blem.
ProsrLEMm XIII.

Given the equation
V2 (2,9) =F¥(z,9)
make ¢ = F and take « (=, J)ny1 any homogeneous function
of the n 4~ 1th degree, and @ («, y), a similar function of the
n”, also let @ (1, 1) == (1, 1) then the equation is satisfied by
making
P JHEdh)
V@& =Famy—
Ex. Let 477 (2, ) =V3Ta5)
Suppose & (x, 3), . =2+ y*and B(w,y), ==2,then one solu-

donis  (r,y) =+ 2L
or leta (,9),4, = (@ 4" ¢ (1) and £ (x, )n =ey ¢(-§)

then a more general solution isJ(z, y) =
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ProsLEM XIV.

Given the equation
Yoz, ) =Fd (v, 9)
In equation (6) we have
o . a(x,y)n_,_l =1 ("‘ q’.@f_ﬂ)
"IJ (.Z', ) ¢ <B (2 y) = @ B(x )

@ (x5 )

put for ¢ (B o y)n+ )1ts value J/ (2, y) then we have

P @ 3) =0 (@) =FY (20)
determine ¢ from the equation ¢"~ v = Fu by Prob. 13,
Part 1. and the general solution of the equation is

CZ3) M
‘!’(m,y)-—@(‘;(%y) )

Ez. 1. Let %3 (2, ¢ =1 (@, y)

in this case ¢"~'v = Fuv becomes ¢* v==u solutions of which are

I

pu= %—, Qu=a—u, <pu,=(a———"u’”)_"7

let a (=, ﬂ)n“: z* 4 y* and 8 (2, ¥), == z + y then solutions
of the equation %3 (z, y) =1V (x,y) are

) 2+2
b (z,9) = afffy‘i, V(@) =a—55

xr +y
L ady @y ={e— (£}
Ez. 2. Let ¥™"(z, y) = {¥ (s, y)}‘ L

. . -—1 /— W §
in this example "~ 'v="TFv becomese” ™ "v=u"and gv=y"
its particular solutions are therefore

1 1

(x’ +y")m’t""l (x" o+ 2xY —y ) w1

x4y ¥
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other more general ones are
I 1

GRS RIION L zzyo() |
V(z,y)= andy(z,y) =
¥(z,) { zm(—”—) } Y(z,3) (Hy)@(%)

y .

ProsLEM XV.

Required the solution of the equation
—_— Neepy n—p
“(2)=Fy  (59)
In (6) we have

n, ”n (‘t’ y)n——x) (.z', y)n-{- H)

(x, y) "4 — (f"z)

Py
¢ (z,y) and substltutmg this value, we shall find

Sy =ed ()

make ¢# v = Fu and find the value ¢, then the general solu-

a (2> )n
tion of the equation is ¥ (z,y) = <p<——‘(—}"——;~) ife(1,1) =

B (1,1).

Ez. 1. Let 4*%(z,5) = {{>* (2,5)}

here g’v=Fv=1v’and pv= e

“(‘_t.’.g)n-l—l ‘/zn
therefore &(w,y):{m-—- ife(1,1)=8(1,1)
A )

more particular solutions are

Y (zx,y) —<”+y (p(l)) and § (z,y)= ({j_—i_-ig_-i—_gj)w

MDCCCXVI, JON Y
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ProsLEM XVI
Given the equation
Fid (2,9), 42 (2,5), .. &e. 4P 2(z, y) } =0
The same substitution as that employed in the last Problem

will reduce this equation of two variables to a similar one
which contains only one

%) /o .2', y)n
puttmgdx(:c,y)__<p( B—(x y”)+ )we have ¢ (.r,y)—-CPk B (@ y)+l)

@ (2, J’)n+ .
and ¢ (x,y) = ¢ ( B, ) also making

the given equation becomes
F{(pu, oy, . . qbf’u} =9

an equation which contains only one variable, and may there-
fore be solved by the methods described in the first part.

ProsrEM XVII

Required the solution of the equation

F{d(2,9), 977 (2,00 .- P2 (2,5) }=0

The following considerations lead to another mode of solu-
tion applicable to this Problem. If in the function ¢ (z,y)
we put y equal to x it becomes { (#, #) call this ¢x: then if
in the second simultaneous funetion of { (2, y) we put y equal z,
the result will be the same as if we had taken the second
function of § (z, x) or ¢ x relativeto x, or symbollically ex-
pressed, it is

$*2(2,9) =¥ (b (22), b (2, 0)), =0z [y=1]

this may be rendered evident by substituting for the right
side of the equation its value § (Y (2, ), ¥ (=,5)).
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In the saine manner it may be shown, that if we take the
p” simultaneous function, and then put x for y, the result will
be the same as the p” function of ¢x, or expressed in symbols
it is

W0 (z,y)=0¢(2) [y=2]
Now since this equation is identical when y is equal to «z, it
will remain so when any other quantity as v is put for z, if
the same quantity is also put for y, therefore
VPP (v,9) = ¢* (v)
now let v=1 (r,y) this equation becomes
VLY (2,), ¥ (2,9)) =¢" ¥ (2, 5)
but the right side of this equation is nothing more than the
p1th simultaneous function of ¢ (z, y ), consequently
_-P-——'I'I’P"I‘l
I () =44 (z9)

If now in the equation of the Problem we substitute the seve-
ral values thus formed of the simultaneous functions, we shall
have

Fiy (29 04(2,9),6" ¥ (£,9), - o™y (2,9)} =0
and putting = for ¢ (x, y) we have

F {z,cpz,cp‘z,. X } =0
which is a functional equation of one variable, and may be
solved by the methods of the first Part. The form of ¢ being
thus ascertained, we have for determining ¢ (x,y) the equa-
tion
Y(z,9) =0z [y=1]

or expressed in words ¢ (#,y) may be any function of x and
y which becomes equal to px when y is equal to .

Ffe
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ProsrLem XVIII.

Given the equation ybr b (x,9)=F(x,y)
F (#, ) being such a function of x and y that it may be redu-
cible to the form Fy (z,7).

1

g1 (*®, n—m
Assume kz/(xay) ={m((:; i) @(3(_;- 3 >}

then from eq. (7) we have .
b, p A\ — ﬁ(l, 1) a(_"_"!)n n—m
@ (% 3),

make Fay, =7 (,¥)==v, and since y (2, y) is given and

« and @ are indeterminate, this equation may be easily satisfied
in an infinite number of ways; put v for ¢ (2, y) our equation

becomes
1

{2 o0 =T

which contains only one variable and may be solved by the
methods of the former part.

Ez.1. Let PP (5, 9) = TH 7 (£)

- Assume « (z,9) = (2 +3)f (33,‘) and B (z,y) =2f (1]
then it becomes

Q?v=v
and calling f any particular solution of this equation we have
X

for the general one

V(ny) =4 fol57(2)
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Ez. 2. Letd/m(x,y) = i;:
put e (z,y) =2"and B(z,y) =y
then the equation to be solved is ¢ v = v a particular solution

of which is pv = !'—:*'3'-'5 putting for v its value and using the

(ire

V(2,9)=20<

Ll—w

the general solution we have

< | %

~ .._V......J

< |8

as a particular case, take
1

n+ 27 _;

which will be found on trial to satisfy the condition.

ProsLEM XIX.

Given the equation

F {(y (f,_}’_)s "L (x’y)’ 'm(x’y)’ o ‘pm(x’y) } =0
This equation is evidently capable of solution by the same

means as the last; putting
1

— >B(l, 1) “(ﬁ’_z)n‘> n—m
4’(‘?’}}) - {a(l, I) ¢(B(£,-2)m

we have as before

I
s — 180 * 02y ) "
VP ¥z, y) = { ~onld (ﬁ & D

. (2 3),
and assuming « and @ such that G, =7 (r,y) =7 and
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making 222 — 4 our equation becomes
g a (1, 1)

I 1 1

Ne=e11 Hewemil Nommil
F{v, (apv), (a¢’v),...(ae?) }:o
which may be solved by Prob. XIX. Part I.

PropLEM XX.
Given the equation

Yui(z,y) =Yv2(z,y)

This equation, containing no simultaneous function, is diffe-
rent from any we have yet solved, and requires the application
of a peculiar artifice.

Inmy former Paper, in order to reduce the equation J*zx==ax

to one of the first order, I made use of the substitutione fox
for Yz : an analogous one must be employed on the present
occasion ; let us suppose

Y(@,9) =0 (0% 0y)
the effect of this will be very similar to that of the one just

alluded to, and its great utility will be evident by considering
its result in the various orders of the same function, thus

V2 1(2,9)=0"f (PO f (0, %), ¢y) = f(F (92, 0¥), 0y)
= f»1(¢z,Qy)

2(2,9)= 0 f (92,0 f(Pz,03))=0 f(Pr.f @z, y))
_ = Q. fo2(0x,0y)
W7z, y)=0 F (0P (0, Py); E F (@2, 0) = F(f (@x, By),
F (02, 0))=0 f= (¢z, ¢y)

and continuing the same substitutions we shall find

J3i1(2,y) = @' f5 {(Qa, Gy ) and 423 (2, y)=0 f 1 3(¢x, ¢)
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and generally 1

wm(z,y) =0 fnm (¢z, ¢y )
If there are more variables than two, the proper substitution
to be made is

V(e a,.. {) =@ fu b (Qr, @z, .. 1)

and there would result generally

n, m, p, &c - N> m, P, &c.
V" @ w . )=8 f(ow, 05, .. g2)

By such substitutions all simple functional equatiohs of every
order and of any number of variables, may be reduced to
those of the first order: but the difficulty is not then over-
come, the resulting equations are by no means easy to solve,
and in a variety of cases it appears, that they are contradic-
tory or impossible.

Let us apply this substitution to the equation of this Pro-

blem, then since ¢ (z, y) = ¢" f (Px, @y) we have

¢ f2r(em 0y)="0 f* (¢, 09)
Performing the operation denoted by ¢ on both sides it
become_s‘ fz,r(?x, oy)=f>(ozx, 0y)
Put ¢ x for x and ¢ y for y then it becomes
Sr(zy)=f(z,y)
which is nothing more than the original equation; from it,
however we learn, that if we can find one particular solution,
we can always deduce from it the general one, which sup-
posing f a particular case, will be
V(z,9) =0 fler ¢y)
After repeated endeavours I have been unable to find any
particular case which will satisfy the equation

Vo, y) =402, y)
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I have also made some attempts at discovering particular
solutions of the two following equations, and have met with
no success.

Y 22 (2,9) =P2(2,9) and 32z, 9) = ¥» 1 (2, y)
Should, however, any particular case be found, their general
solutions flow immediately from the method just explained.

With regard to the equation of the Problem 41 (z,y) =
Y 2(r,y), I have little expectation of finding any particular
case, as I think the following reasoning, though perhaps not
quite so satisfactory as might be wished, will show the impos-
sibility of it. ~ First, let us suppose, that ¢ (z, ) is a symme-
trical function of # and y, let it be y (z, y) then our equation
becomes

X {X (.50} =x{x,x (%)} =x{x (%) x}

Comparing the first of these expressions with the third,

we may observe that in the first, wherever x (z, i )occurs, the
same quantity 5 (z, y) also occurs in the third, consequently
in this respect, the first and third are identical : but wherever
y occurs in the first, z occurs similarly in the third, therefore -
in this respect they cannot be identical, unless y is equal to .
From this it appears, that the equation in question cannot be
solved by any symmetrical function. Again, the given equa=-
tion Y1z, y) == ¥1,2(x,y) contains 2 and y in the same man-
ner, and no reason can be assigned why in the solution x
should be contained differently from y: this may, perhaps,
be made more clear, thus. Let f (z, y) be the quantity to
which each side of the given equation is equal, then
Y1 (2,9) =F(2,y) =4z, )
Now since ¢ (¥ (2, ¥), ) =f (%, ) and also ¥ (z, ¥ (z, ¥))=
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J(x,); and since taking the second functions is a direct ope-

ration, it is evident that the original function ¢ (z, y) will
produce the same result, whether we take the second func-
tion relative to x or relative to y; therefore it must be simi-
larly composed of x and y; that is to say, it must be symme-
trical relative to x and y: but we have before shown that no
symmetrical function can satisfy the equation, consequently
the equation is contradictory.

This train of reasoning I offer with considerable hesitation,
well aware of the extreme difficulty of reasoning correctly on
a subject so very general, and which, from its novelty, the
mind has not been sufficiently habituated to consider, so as to
rely with confidence on any lengthened process of reasoning.
I thought it, however, right to mention this proof, that those
who may seek for particular cases, might first enquire whether
the equation be possible.

ProsLEM XXI.
Given the equation
L T Jo2(z,y) =yd>*(2,y)
Substituting ¢ f (¢ x, ¢ y) for ¥ (z,y) in this equation we have
zo frr(emey)=y ¢ f>* (9%, 03)
putting ¢ @ for z and ¢ y for y it becomes
¢ .9 o (2.9)=0 .0 "X()
This equation will be satisfied if we could find such a form
for f, that the two following equations might be fulfilled.
Sfror(x,y)=y and f»3(2,5) ==
for in that case it would become
¢ roy=0y.0c
which is identical.
MDCCCXVI. Gg



220 Mr. BABBAGE’s essay towards

Our enquiries must therefore be directed to this point, and it
will be found that f(z,y) =a — x —y has the required pro-
perties, and is a particular solution of the given equation :
hence the general solution is

Y(2,9)=0 (a—Pz—0y)
There are many other particular cases which fulfil the same
condition, such as

T X

f(x9) =5 adf(z,y) ==
these give the general solutions

Y(29) =G 5 and d (29) =" [{552)

ProprLEM XXII.
Given the equation
Y2 i(x,y) . Vo2(z,y) = zy
Using the same substitution employed in the last Problem,
this equation becomes

§ [ (0z, ) O S (03, ) =2y
and putting @'z for z, and @ y for y we have

S for(2,9) . for(y) =0 2.6y
which becomes identical, if f» *(z,3) =2 and /&2 (1,3 )=y
consequently all the sclutions of the last Problem also solve

this.
ProsrLrm XXIIIL

Given the equation

F{z, 42 (a,5)} =F{d» (m9),9}

this equation may be solved by the same artifice as the two
last, assuming ¢ (£,5) = ¢ f (¢ z, @y) we have
¥ {.12, ¢ f’)‘(({)m,@y)} =F{ qsifz’x(@x’ ‘@J’)’y}
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and putting @ x for z,and ¢y for y, it becomes
F {6‘ x, (;')_ffﬂ(x,y)} =F {q{’f;,x(x’y), @- }'}
this is identical if we assume f so that the two conditions
So2(x,9) =y and f»*(x,y) = x may be fulfilled.
The same method is applicable to the equation

[dor(z,9)— 2 | F (2,3, 4 (2,y) &e.) = {do2(,y) w?y}
I: (, ¥, ¢ (x’.y)’ &e.)

for the two factors which multiply F and F vanish on account
of the value of f.
ProsLEm XXIV,
Given the equation
LADE (,9) =a¥,  (z,y)
this equation, by means of the substitntion already so frequently
employed, becomes
2O S (x 0y) =af f21 (¢z,05)
and putting @ x for z, and ' y for y we have
2.6 7 (5,y) =a § for(ay)
An artifice somewhat similar to the one already employed,
will afford the solution of this equation: if we can find such
a value of f(z, ,) that f23 (z, y) = ¢ and also =1 (z,y) =z
the equation will become identical by 'making ¢ == Qa. Such

a value offisf(w,y) =c 2 for

y
€ =
fZ;Z(x,y) =c—_‘;‘=c andf‘x ‘(.r,y) — %ﬂ:x
4 -;- ¢ _;
hence the general solution of the given equation is
W) =@ [248Y
Vo) =8(5

Gge
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ProsLEM XXV.
Given the equation
F {§7 (@,3), 2} =F {a, ¥ (2,9}
making the substitution ¢° f(Q,Py) for ¥ (x,y) and in the
result putting ¢ @ for «, and ¢"y for y, we shall find
F {qsqfﬁ(w,y), ) w} =F {a, O fo1 (x,y)}
which will become identical if we select such a value for f(«, y)

that @' %2 (x, y) == @, and also f»* (#, y) = @ such a value
isf(x,y) = @a 4+ y — @; hence the general solution of the
Problem is |

Y@)=0 (Pa+ 0y —02)
the more general equation
{qu,:(w’y) — w}F {05’,)’, (2, ) &C'} = 4> (2,) .
;F {x,y, Y(@,%) &c.}

may be solved nearly in the same manner, its solution will be

V(@) =0 Py — @)

ProsLEM XXVI.
Given the equation |
F {@, 3 4 @), 412 (@), 421 (a,9), &ef=o
Assume ¥ (#,y) = ¢ f {© @, ©¥) then we have J21 (2, ) =
O f=r(Qo,0y),and Y1 2(x,y) = CBlfhz(w,y) and generally
Vom(@,y)=¢ fomn(pa, ¢y)

Substituting these values the equation becomes

F{w’y,glprw’ <P}’): 5xfl, 2(@&3 @y), (-P.ffz, 1 (q){l’,@y), &C.} =0
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and putting ¢ w for  and ¢ y for y we have

Fl{0,0 9,0 f(3) 0 f1:2(23), ¢ f21 (2,9), &e. }==0
Some particular value of f must now be assumed, and the
equation treated as one of the first order relative to ¢ .

The form to be assigned to f'is of some consequence; it
ought to be a particular solution of the original equation: for
if we assign to it any other form, this adds a limitation to
the original equation which may or may not agree with it,
a particular solution should therefore always be employed.
This remark is applicable to several Problems in my former
Paper, and with this restriction, their solutions will remain

correct,
ProsrEMm XXVII.

To transform the equation |
F {a,y, 4 @), 41 (az, By), 42 (aw, By ), &e. } =0
into the form of the equation of the preceding Problem. |
Assume Y (@,y) = o} f(@a, ©y), then the equation becomes
F {29,/ (02,09),0 1 (002,08),0.f12 (022, 089),&c. }=0

find for ¢ by Prob. VIL, PartI. such a value that it shall not
change when any of the following quantities are substituted

for x.

Qi Bx
a® B:C
k4 k1

a0 Bz
a 2
&ec. &c.

let this value be A, then the equation becomes
Fiz,9, A f(Az,Ap) A f21(Ax, Ay), &e.} =0
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or putting A 'z for z, and A"y for y we have
F{A'w, Ay, A f(wy), A fa1(my), A foz(a,y), &e.} =0
an equation of the required form.

One important use of this transformation is the solution of
equations of the form

F iz, 4 (@), d02(ez,y), b1202,), 8¢} =o
in which the functions are taken only relative to y, and yet x
is not altogether constant. It may be transformed into

F {x,y: ‘L(w,y): 4’"2(&’,}’), ‘P!’3(w:}’)s &C-} =0

which may be treated as an equation of one variable, @ being
constant. This is the species of equation alluded to at page
(198)

After considering the various equations amongst the higher
orders of functions, another question presents itself, which
may be thus stated. What must be the form of a function
of (n) variables, such that taking the functions relative to
any or to all of them any number of times, and combining
these quantities in any manner, the result shall (when all
these variables are made equal to 2) be equal to a given func-
tion of x? This question might thus be expressed when there
are only two variables |

F{a, 5,4 (2,9), 422 (2,9), 471 (0,9), & }=f(a) y=z]
this condition obviously enlarges the signification of the func-
tion ¥, and the solutions ought to be more general. We shall
accordingly find that some equations, of which without this
condition we cannot find even a particular solution, are capa-
ble, when it is added, of very extensive ones. When there are
more than two variables, the condition may be, that making
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them equal by pairs, the result shall be given: a particular
case would be the equation

F{w,y,z, v, W, 1,V (Z,,%,0,W,7, &c.} F{:c, v,r} [ ]
w=r

Instead of making y equal to z, and % to v and so on, ¥ might
become a given function of z, and z a given function of v,
&c. thus:

F{x,y,z v,w,”,¥(z,9,%, v,w,r,), &c. }_F{x,v r, } [ '—Bv]

W=yr
a few examples will sufficiently explain the method to be
pursued in treating these equations.

ProsLEM XXVIII.
Given the equation

Vor(@,y)=yn2(xy) [y=z]-

This Problem, of which without the condition of y being made
equal to £ we could not find even a particular case, readily
admits of solution in its present state. Since = *(a,y) is
only equal to 4*2(2,y), when y = x we may put for the given
equation _

Va (@)= 0 (@), ¥ (@)} (D
provided that when y is equal to z,the latter side of the equation
shall become % 2{@,y ), and this fully satisfies the condition of
the Problem. If, therefore, we can find such a value of ¢,
the equation (1) may be treated as a common functional equa-
tion of two variables, and may be solved by the rules already
given.

Nor is it at all difficult to find such a value of ¢; if we make
45 2 (&, 9) ==%, ¢ must be such a function that

Cp(w:y:z):z C}’r—ﬂ



226 Mr. BABBAGE's essay towards

It is evident that particular values of ¢ are
x—y 4=z and —;— z

many others might be mentioned, but it is desirable to deter-
mine ¢ more generally

Since e(@,y,2)=2 [y=a]
itis evident that ¢ (2,#,2) =%
and since this is independent on any particular value of # we
have

e(v,v,2)=x
that is to say, that whatever quantity is substituted for », if the
same quantity is also substituted for y, the result will be equal
to . Now let v = ¢ (@, 7, %), it becomes
oS0 @@y, 2 0(@.y, D)} ==
but this expression is nothing more than the second simulta-
neous function relative to # and y, and may be therefore
more concisely expressed thus
onni(x,9,%) ==
in which equation, since it does not vary relative to z, that
quantity may be considered as a constant ; and the equation
® m(m, y) ==z = constant
being solved, we have only to substitute instead of the various
constant quantities arbitrary functions of z: thus then the solu-
tion of the equation
¢(nyR)=o [y=a]
is reduced to that of
%2 (@, y) == constant

and we have only to refer to Problem (10) for its general
solution.

Let us apply this to the solution of the equation of this

Problem Yui(@,y) = b2 (@,y) [y=a]



the caleulus of functions. 227

take as a particular case of the equation ¢ % 1 (2,, %) ==

o(@,y, %) = -;- %, then the equation of the Problem becomes

Y 1(z, ) = S0 (@,9) or y¥ (0, y) = adnr(w, )
this is the equation solved in Prob. XXI. therefore all its solu-
tions are also solutions of this equation. This however is,
comparatively speaking, but a very limited answer: every
different solution of the equation ¢% % (@, y, %) = % furnishes
a new solution of our Problem, containing one or more arbi-
trary functions; each of these may very justly be called a
general solution ; but to investigate the number and nature of
the arbitrary constants which enter into the complete solution,
is an enquiry of considerable difficulty.

ProsLEM XXIX.
Given the equation
2, z}n
1,2
V@) =r@) [y=w]
This signifies, that after taking the second function relative
to z, and then the second relative to y; the result is consi-
dered merely as a function of , and its #* function taken rela-
tive to that variable: lastly, the quantity to which this becomes
equal, after performing these operations, is given. The man-
ner of treating these equations is very simple; put
V%2 (@, ¥)=yx &), then our equation becomes
2, z}n
1,2 ,

V@) =xio=F(a)  [y=a]
determine % from the equation x”x=TF (&) by Prob. XIII.
Part 1. and let its solution be F (@), then we have

yur(@y)=F(2) [y=ar)
MDCCCXVI, Hh
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This equation may be solved by nearly the same method as
that employed in the last Problem.

If the function occurs in different shapes or of various orders,
this method is inapplicable, as in the following Problem.

ProsrLEm XXX,
Given the equation

F{4s9 @) 495 (@,),my} =0 [y=a]

The difficulties in this case appear to be much encreased from
this circumstance, that the second function of ¥ * (@, ) rela-
tive to @ is quite different from the second function of Y 2(z, x)
relative to the same quantity. The method of solution which I
shall explain is equally applicable to all of this species, and con-
sists in reducing them to a class which has been already solved.

It may be observed, that whether we take the second func-
tion of {* * (&, «) relative to #, or whether we take the simul-
taneous function of Y (@, y) considered as a simple function,
and in the result put @ for y, the two expressions will be the
same ; the first gives

Yo x (b1 (@, @), 4 1 (%, @)

and the second is

| V2 x (b (), ¥ (2,3))
which when y becomes equal to @ is identical with the former;
but ‘

Yoa( o 2@, y) o ()= 1 { S (2, 5),9), Y (2,9),9) t

2,1, I, 0, I

the lower line of indices denoting the quantities relative to
which the operations are performed. In a similar manner it
may be shown, that 1,3,2,252

1, 2) 1y251,2,2

@)=y (%)
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Substituting these values in the original equation, we have

2y Ty 151, 1 1,2, 2,2, 2
I, 2y 1y 252

F{4 (29),4 (£9), 9] =0 [y=4]
This is an equation similar to that of Problem XXVIIIL., and
may be solved by the same means,

New methods of solving functional equations of the first order, and
also differential functional equations.

The new methods which I now propose to explain are only
applicable to equations of the form
F {w, Y, Yax,da'a,.. x}/aa”w} =0
where « must be such a function that a#+1x=x. By the me-
thod of Prob. VII. Part I. all functional equations of the first
order may be reduced to this form; and although in many
cases this reduction is very difficult, or even in the present
- state of analysis out of our power, yet it is theoretically pos=
sible, and we shall therefore consider all equations as so
reduced. There is this remarkable difference between the
former methods and the present one:

Those which I have already given always led to the general
solution, and perhaps, in some cases, to the complete one ;
these, on the contrary, which I shall now propose, always
conduct us directly to a particular solution, which does not

~contain even an arbitrary constant. It has, however, several

~advantages; it is the most direct method with which we are

yet acquainted ; and if by any means we could introduce into

these solutions an arbitrary constant, it would atford us gene-

ral ones: this is a step which is wanting to connect it with

the former methods. In the case of differential functional
Hhe
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equations, this step is supplied by the integrations which are
necessary, and we thus arrive at their general solutions.

ProeLEM XXXI.
Given the equation

O {w, Y, x!/exw} =0
and also @ = @ ‘
Find Yz in terms of @ and Y aa; let it be

Vo=F{o,Yea}
put ax for #; then it becomes |
Y a‘w:?‘{aw,xbu’w} = F{aw, \pm}
put this value of Jae in the former equation, and we have
fw=F{2F (ax, yu)}

from which equation J& may be found in terms of .
If &® & = @ instead of z*» = &, we should find

Yo =F{a,Flaz, Fiaa o}l

Ex. 1. Take the equation (Y@)? . (a—=zx) = @ where

el =a — &
¥

an 5
then vo=(ra=m)
and Y(@a—ax) = (“-x)"}f’
this substituted in the former gives

X" |
1.11.27 =] (a—x) - ?
. (57
from which we find np

LA F:‘l
(@—n?

which will be found on trial to satisfy the equation.
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Ex. 2. Given the equation " {o — a{/ —;— = ba?

1
here ax = — and «* =2, and we have

Y=

and putting — ~ for @ it becomes

4
bx? e @y
X

ll/'l—'_"bx —adz

sod

x
Substituting this in the former equation we find for the value

of x

P4 0]

Ex. 3. Given the equation Y ==z Y (

A==
S 4

):.1:?

by employing the same method its solution will be

b ==
(x l—cx) - (x x-—c.t)
ProBLEm XXXII.
Given the equation
F {x, Vo, baz,. .Mnx} ==0
and also at+1 =z

putting successively =z, ez, oz, &c. «*x for x, we have the
following equations :

F{x, xpx,dmx,..\pu”x} =0 (1)
F{ax,\lzocx,dmgx,..\{/x”x,g}/x}=0 (2)
&ec. &ec.

F {a”x, Vo T, Yx, Y, .o Y un—lx} =0 (nd-1)
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From these #-41 equations we may eliminate the z quan-
tities ¥ & x, Yo’ @, and Ya” x, and there will remain an equa-
tion of the form |

F {x, ax,e’x, .., 12/.1:} =0
from which ¥z may readily be found.

Ex. 1. Let Yz FYaer=jfrando’r=ux
then YaX -+ Yo'z = fax
also 1.!/042&’-‘— \l/x :_:fa’x
hence we find $x = -—;- (f& — faz + fu' )

Ez. 2. take the equation

Y& + fr Yaxr = fx
~ where fand f are perfectly arbitrary and z’r=w; then making

use of process above described we find
{x—-fx}fux
't!/ T == I—:‘—fm;
if &® x==a we should have
J:x — fx j:acx + fx fax {a‘x
\p L= 1= fx fax fo*x
and generally when "z = x we shall have

Jr—fi fax + [z fux fatg—tc. L fr faz . f"2a fat

=

A 1—ffx fux faz o oo fd'
Ezx. g. Take the equation '

YT Yax -} fr Yx = fz

if «’r=w, Yo must be deduced from the equation
fx
\?/x = fux‘—-—_—
Jr o+

Juw +



the calculus of functions. 233

and generally when «" r==x the form of Jx is determined
by the equation.

fx
\!J T = __facx
2z +
f Jarx
Sax +
wrx 4 &c.
4 Hfe
A e 4 Y

It may be observed, that. this method of discovering particular
solutions by elimination, will not apply when the given equa-
tion contains only the different forms of the function without
the variable quantity itself: thus it is not applicable to the
equation
F [yzx, Yer, .. \punx} =0
the reason of this is obvious ; for if we eliminate from this
equation (by means of the # equations which arise by chang-
ing the order in which the functions are placed), all the func-
tions but Yz, we shall have a result containing nothing but J
and constant quantities, and therefore, Y& is equal to a con-
stant quantity : it is true such a value of Jz will satisfy the
equation, but it sbarcely deserves the name of a solution.
Avother exception is, when the equation
F {x, Yz, Yar, &c. Y a”x} =0
is homogeneous relative to the different forms of the unknown
function ; for in this case when we attempt to eliminate them,
they all disappear together, leaving an equation of condition
thus given
Vo=@ —2)Yavanda’v=w
we have Yaw = (a~ ax) Ya'x = (a — ax) Yo
and o = (a—2) (a—ax) Yo or 1 = (a—ax) (==c'w)
which equation is not necessarily true.
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Another exception is, when the given equation can be made
to assume the form
F {¥a, Yaw. . Jow} =fo

In this case the equation cannot be fulfilled unless fx is a
symmetrical function of @, ax, &c. 2”x, because the first side
is such a symmetrical function : this reason, however, should
be received with caution, for if the operation denoted by ¥ be
an inverse one, it may admit of several values, and it seems
possible, that in such a case the condition relative to the form
of f need not be fulfilled. In my former paper I explained
the means of finding solutions of the equation y*» =a. Ithen
contented myself with explaining the theory without men-
tioning particular cases; as these latter may be required in
our present enquiry, I shall subjoin the following particular
solutions of V* @ =&

Vr=a—g  Ya=log (a—¢") pr=(ar—a); Jr=V1—2"

yr=—  w=r—log(e'—1) Yr=—i—; ==
- (ax"—1) 7
T2 -1 Z
Vr= 2  da=tan (¢a—tanx) $r=;—
__a—bx pasina—a)\
Vo= btcx Ya=tan (cos acos x) Vx'_q/xz___l

Particular cases of * @ =z

5 s . __atbs
'&!J.;’l? - i \X/(L’ = - ‘z’x —_— __b"+bc+cfx
1 a
_ __(ax"—a¥)n — 2y .
VI == e Jr=" Yo =log (ae*—a*)—u

Yar =ax:a“ \2/.22:( a* )‘I;, ¢x::log (E”-——E‘)-—-—JJ-{-C

a~2x"

Yo = 1t ‘I"”:"T—{? Y = — log (1—¢")
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Particular cases of {* v =@

I
=1 L — Lz = ()"
Yo = 2 1= Yo = 1—x Yo = (z-—.z")
: I
— 2 24" ___ (2x"—2) n
11/&6’ - 2—x Llj‘r T zac—c*x Yo = %
— x—1 . a+tbzx .
Yr=2 — Yo = B, Yae=loge—r-}-log(e—1)
2a
Particular cases of {° v =w
. 1 3wt . a-+bx _
1!/.12 —  3(1—x) YT = 3% Yo = cbr=bectc
3a
L
. 3 . 34> 1 1\ n
Yo = pm—— Yo = 3ac—c*x Yo = z (xn——:;_)

Yr =3 ’—‘—';—1 1px=3’;}3§ Yr =log 8 —x -} log (¢*—1)

ProsLEM XXXIII.

Given the equation

L dd«x
Yo x = dz

a being such a function that «* ® = x
For @ put «x, then

dy ez
dax

Vol @ ==y v ==
by differentiating this we have
dyx _ d dlas
r @

T et @

de = dx  dax
but the left side of this equation is by the Problem equal to

Y a a; therefore

_d dilax
\p“w-—-a; " T dax

but we also have
ddar __ dbax dax

dz 7 daxz ° dx
. ddyax __ dlax daz\
consequently 2ot = St (71'5')

MDCCCXVI. ILi
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this being substituted in (a) gives
d {rlq/ax(ddzax).'?
S

dz dz dr

Vax =
put Jax = z then

=t (5]
dx  \dx\ dx
which is a differential equation, from whose solution 2 or Yax
may be found.
Ez. 1. Given the equation

. di x
“"/ (a'—'x) =
g d . . _
in this case T&f = — 1, and the differential equation is
zda*fdz=0

its integral is # = ¥ (¢ — &) = b cos x - ¢ sin .

The two constant quantities which have entered by integra-
tion must be determined so as to satisfy the original equation.
This condition gives

— bcosa
€ = ——
I —sin a
the quantity b still remaining arbitrary ; the solution of the
. dy z . '
equation ¢ (a — ) = -—j’f is therefore

q;x:bcos(a——x)-mlbwsa

——— sin (a—x)
. - SN a
Ez. 2. Take the equation

\f/"l"""‘d x
x — dx
. . 1 dox —1
in this case a2 = — and == = —;

x dx x

and the differential equation becomes
2da*dezxdrdz 4 a*d>z=o0
whose solution is

R S b —p—1 e —1Ev—3
=Vr=—gns +bat  p==7m
and Yo = ———z? ' § bzt
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in order to ’determine the constants b and b, substitute this

expression in the given equation and it will be found that
b

el bp therefore

Jr=—10b [)x + ba !
: x
in which there still remains one arbitrary constant.

It is observable that both these solutions contain one con-
stant. Let us suppose this to be changed into an arbitrary
function of x, and let us determine what conditions it must
be subject to, that it may satlsfy the Problem: taking the

second example we have

—p__, b1y
br=(z "—pr " )or

and the equation becomes

p+1,dpzx d(z P.—px{’+x

(o—pe o= (2 pa TG L s
from this equation ¢z must be determined (the method of
doing which will appear in a subsequent Problem). If this
solution contains an arbitrary constant, the same process may
be again repeated. We may thus continue deducing one
solution from another as long as we can solve the differential
equations to which they give rise, but still these will only be
particular solutions.
_ ProsLEM XXXIV.
Given the equation

dlx
dx"

and 2’z =z, put for = successively ax, «’z, .. at—1 z then
we have

Yaw =
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2 d"dazx
11/04 X = W
&c.  &c.

n —2
p1, e
\P“ X == (d“p-—-zx)n

" —
\I/aa?x o] d ‘WP £
(daap—lx)n
but Yatr = Yo and combining all these equations we have
dr d.>z dryx

P = Yo = . .
de v @7 (@) da)

which is a differential equation of the p#n” order and putting
q P g

Yo == z we have
Pz

(dap-—lx. dl ™22, .. dax. dx)*
this being integrated gives the value of z or Ja.

==

ProsLEM XXXV.
Given the equation
F{x, Y, tl/mm,ﬂf}= o alsodtw=ua
Find the value of Yaa from this equation and substitute in
it aw, o’x, &c. ap—1 & for x, then we have

Yoz = F {, 4o, 5

1!1049.2::1? $ e, Yo, d;’ix}
&ec. &ec.
Rl
pp == Tl P, b ", }
dfﬂ& v E { ’ \!j ’ dup—lx

dmLux dber d o —Iz
y =, &C. ———
®x dup X

In each of these equations for—1—

. et 3 i s o \
put their values @k d_“_w) , date (datai g dyal ’x(da ' )
dx dr dr dx ?
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and also differentiate the results. Then we shall have the
two following sets of equations

Jeaw=F |z, o, 21 (1)
Yo' = xF {ax, Yax, dj:x (%j‘l} (2)
&ec. &c.
¢ap—1x=lj‘ {“p—zm el 2z, d\"“j’-z (d % ) } (p—1)
Jd = }*‘ {ap"‘x, qjof’_x, d\}/a;:l.r(da;;;-la) } ()
and also
e L p (o, By (1)
“rtrfwgm (&) o)
&ec. &ec.
d\imjx"'lx =_;i__ If{ P—l¢ p— 2y dq,ui’;- (dac } (a P...])

g g e @

Since »’z = z equation ( p) becomes

g

Yz = Fsi wb=1z, Yab—1g, dd "' (du?"“w ) }

dz dz
from this by means of equations (p—1) and (2, p—1) we may
—_ b= . . .
eliminate yof "z, and £ ——" the resulting equation will con-

tain only z, {x, Yar, &c. dap—22 and their differentials. From
this by meaus of (p—2) and («, p—2) we may eliminate Jap—2x,
anditsdifferential, leaving an equation containing only z,J.x ax,
&c. JeP~3z and their differentials. In the same manner

JoP—3z may be eliminated, and the process may be continued
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until the last equatlon will only contain #, 4z and their diffe-
rentials ; this equation must be integrated, and it will deter-
mine the value of {yx in terms of z.

The same method may be employed for the solution of the
much more general equation

F{ X, YT, Yarx, .. P-Ix,%, d’"\l;: =, &c. }-— 0
provided also, that ¢ x = z.

By substituting successively for x the quantities az, o'z,
&c. ap—1x, we shall have p equations containing the functions
Jx, Yax, and Yap—1x and their differentials.

Let each of these be differentiated as often as may be
required, and we shall have two sets of equations by means
of which all the quantities except x and .z, and their diffe-
rentials may be eliminated, the result is a common differential
equation whose integral will afford the value of Y& in terms
of z. If after satisfying the conditions of the Problem, there
remain any arbitrary constants, we may suppose them func-
tions of x, and new equations will thence arise by which they
may be determined.

It might occur (when there are several arbitrary quanti-
ties) that, by assigning particular values to some of them,
the others might remain in a certain degree arbitrary, should
this be the case, we should obtain general solutions.

ProsLEM XXXVI.

Given the equation
-4, L == M
Assume Yx == <p f(pa?, then the equation becomes
dg Jew
(P f oL = dx
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putting ¢ for # we have

=t . ____d;f.r__daxfx d«;xw -t
<pka—da“”—— dz (dw)

or ¢ [z 5%1” = -‘%{3

Some particular solution of the original equation must now be
assumed as the value of £, and the resulting differential func-
tional equation must be solved. The only particular case of

the equation {*x == %‘%ﬁwith whichIam at present acquainted, is
1TV =3 1Ey/—3
=) 5.

Other more complicated equations containing the various
orders of functions, and their differentials may be reduced to
those of the first order by the same means, but great dif-
ficulties still remain; it is by no means easy to discover par-
ticular solutions of the original equations, and even when these
are found, the functional equations of the first order which
remain to be solved, are of considerable difficulty. I shall
therefore refrain from giving any more examples, and pro-
ceed to show how functional equations involving definite inte-
grals may be reduced to those we have already treated. Such
equations might occur in a variety of curious and interesting
enquiries, few of which have yet been noticed. D’ALEMBERT,
in one of the volumes of his Opuscules, has examined a ques-
tion which may be referred to this class; it is the following.
Suppose a sphere composed of particles of matter, what mustbe
the law of attraction amongst these particles, so that the force
of the whole sphere acting on a particle at a distance, may fol-
low the same law ? the question might be varied by supposing
the law to be given, and the form of the solid to be required;
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but the general solution of such questions is by no means
easy. ‘ '
PropLEM XXXVII

Required the nature of the function ¢ such that
’ f de Y'x = Ja
the integral being taken between the limits x==0 and r=a.
Assume ¢ (z, v) such that
p(@,v)—o(0,v)=v
the form of ¢ may be ascertained from this equation by means
already described. Then if we make

Sz Ve = ¢ (2, a) (1)

it is evident that between the two limits x = o0 and & = q, the
integral wiil be reduced to Ja, and we have therefore a diffe-
rential functional equation whose mode of solution has already
been pointed out. Other more complicated equations may be
solved in the samme way ; these I shall omit. I shall, however,
make some observations on this method of solution, with a
view to point out some questions of considerable importance.

In equation (1) the function indicated by ¢ is so assumed
that we may have :

¢ (a,Ya) — ¢ (0,da) =1Ya

from which, perhaps, it might be imagined, that ¢ (z, Ja)
must contain only z, e and constant quantities, but the con-
dition would still be fulfilled if it contained ’a, ¥*a, or J~a,
which though not actually variable cannot strictly be regarded
as constant. To fix our ideas, let us consider the example in
this Problem ; one value of ¢ (z, ¥a) is evidently ¢ (, Va) =
52;— Ya, we have therefore

ﬁx Vo= Ja
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and by differentiating

. g1
. ) ’l’ = at '4/@ ’
from which Yz may be found.
This is a solution derived from a certain form attributed to

¢, but we might also give to ¢ the form

¢ (z, Ja) = -gxpa + 2 (x—a) f(a, Ya, V'a, . . 4"a)

and, in that case, the equation to be solved would be

([ d
ny

: d.
Yo =""" a4 5 (@ (a—a)) f (& Yo, ¥'a, . . 4a))
this contains only the second function of the unknown quan-

tity and must be solved as a second functional equation, con~
sidering a,Ya, &c. Y"a as constant quantities ; let its solution be

¢x=F{x, a, ya, . .\V’a} (a)

then we must put z==¢ and determine Ja from the equation

Ja = F{a, a, ya, . . \!/”a}

the value of Ja thus deduced, will furnish the values of ¥°a,
&c. J"a, and these being substituted in a, will give the value
of ¥z ; this solution is evidently of a different nature from the
former, and forms another species.

Again, the following form of ¢ will also agree with the
conditions :
o(x,a) z'f-l-:-\pa—}-x?(x—-a){f { a, Yo, YE.a,. e, 2,92, "z, ..,Mx}
which being substituted in the Problem Jz must be found
from a functional equation of the &% order; x must then be
put equal to a, and the new functional equation of the n*
order relative to @ must be solved; this is a third species of
solution different from either of the former. Respecting
these three species of solutions, a very important question

MDCCCXVI, Kk
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may be proposed. What degree of generality does each pos-
sess, and how many and what sort of arbitrary functions does
each solution involve ? To discuss this question, and to point
out the nature of other solutions yet more general, which may
be found for these and other similar Problems, would far ex-
ceed the limits of a mere outline of the calculus. I shall con-
clude my remarks on this Problem by stating the plan to be
pursued in one particular case, which may serve as a model
for all similar operations. 'Take as the form of ¢ (x, Ja)

’ Y 2 it
o (7, 4a) = (z—a) bt — =0y,

then we have

. Ja L2 a—z Y&
Va=F {2 (a—a) s — T3 ve!
this is a differential functional equation which must be sclved
on the hypothesis of a, Ya, {’a, Yo and 4’0, being constant

quantities. Let its solution be

Vo = F {1, a, Ya, ¥a, Yo, Y0 } (1)
we must now put #==a¢ and treat the resulting equation as
one of the second order, considering Jo and 4’0 as constants.
Let its solution be

¢a=1:‘{a, 40, ‘!’90} (2)
Now substitute o for a retaining o asa letter instead of making

it actually zero, there will result a new functional equation of
the second order, whose solution is

| Yo = F{ 0 }
and lastly, substituting this value of Jo, and also that of %
which may be deduced from it in (2) we have the value of

Ya, from this {’ may be found, and these being substituted
in (1) give the value of Ya.
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PropLEM XXXVIII
Given the equation
ay (z, ay)
Y (zy) =" G2
where &* y =y.
For y put 2y and the equation becomes

Ay (2, & dy (=,
Y (2, 29) = 4z(x ) Jfgzy)

differentiate this relative to x, then we have

dy (x, ay) — d*(z,y)
dx T da?*

this substituted in the original equation, gives
b (29) ="
which is a partial differential equation, whose solution is
V(@) =T
¢y and oy being two arbitrary functions of y, so constituted as

to fulfil the original equation. These may thus be deter-
mined, since

\P(x,y) =¢oydc oy
dy (z, ay)

0
we have v =" oy ~— ¢ Qay
£ 3

and, since these two quantities must be equal, we have the
following equations
¢y = ¢ay and ¢y == — gzy
the former c!f these is easily satlsﬁed by putting for ¢y any
symmetrlcal function of y and #y; and a particular solution of
the latter is
oy=(—y +ay)c
and since this solution contains an arbitrary constant, it may
Kk 2
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be changed by Prob. VIIIL. Part I. into any arbitrary function
which does not vary when y becomes ay; its general solution
is therefore L
oy=C(—y+x)e(sa)
and consequently the general solution of the equation of this
Problem is
V(z,y)=ce(a)+e (9—3) () @)
Ez. 1. Take the equation
§ (@ y) = L=
in this case ¢y==a—y, and the general solution is

V(2,9)=¢0(,a=y) +¢ (a—2y)0(3,a—y)

Ex. 2. Let the given equation be

d«!/(x,-;-)
4l(x’y)z dz

here ay =“-;— and the geneka] solution is
S RN Tt G P D)
Y(x9)=r0(05) +e S-o(n5)

ProsrEm XXXIX.
Given the equation

d‘]’ )“)
Y (z,y) = e

supposing a?y = j.
By substituting successively ay, o, &c. at—1y for y, we have
the following equations

d (2, o

V(2 y) = o
d 5 o

Y (2,2y) = )
&ec. &c.

d (x, aly)

¥ (z, al=1y) = (Zx L
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d‘””’ W %) by means of

dy (m, )

From the first of these we may eliminate

the differential of the second, and from the result —22X

may be eliminated by means of the differential of the thlrd.
And by continuing this process, observing that ¥ (#,2?y) =
¥ (x, y) we shall find

X (JC y) d"’l/(%y)

this partial differential equation must be solved, and the arbi-
trary functions which enter into its integral, must be made to
satisfy the conditions of the Problem. "

Ex. Let p=4, then ¢ (z,y) = % “ =)
the resulting partial differential equdtlon will be
V(& y) =9y — e ¢y+smx ¢ytcosz.0y

hence
d‘l’("f’ “y)

and the solution of

=" ¢ay+g cpay+cosx cpuy—-smx qmy
the first condmon to be satisfied is
¢y = ¢zy
which is readily fulfilled by making ¢y ==¢ (5, @y, oy, &),

the next condition is _
Q) = — Py
% 2

This must be solved by Prob. VIII. Part 1., and we shall have
oy ==y + & — oy + %) ¢ ) w, a7y, a})
the third and fourth conditions are V
7y = gy and 0y = ey

In the second of these put &y for y, and it becomes ¢ay=¢a"y,
4 33
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this substituted in the former, gives
9y = ey
whose general solution bemg found by the method in the ﬁrst
part gives L
oy=(—y+2¥) ¢ (5, s 7, &)
and consequently
| @y—-(-wy+wy)¢(wy,wy,ay 7)
these values being respectively substituted, we have for the
general solution of the Problem in this example,

V(@)= a,2%,aY) e (=) tay—ay+a)e(y, 2y, o) +
F(—y+a9)0(y, 09,27, 2y) sinaw 4 (—ay+2%) ¢ (2, 2"y,27, ) cos x
If the original equation had been

§(z,y) =TLin)

the partial differential equation to be solved would have been

SR 21T
V(2 y) =—i -

This form is rather remarkable, the equation can always
be integrated when 7zp is a whole number ; let us suppose 7
to be a fraction and p a whole number, some multiple of the
denominator of #.

Ez. Let n =1%, p =2, then #p =1, and «*y=y, and the
equation to be solved is

d 4,(x, ay)
b(z,0)=—7
whose solution is ¢ (@, y) = ¢* ¢y, or by assigning a proper

form to ¢y it becomes

b(2,9)=e0 (3 a)
Not only may the index of differentiation become fractional,
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but the index of the order of a function may be a fraction* or
even a variable quantity, and such equations as the following
might occur i ds

Viz = dn®
To notice the extreme difficulty of the enquiries to which
such equations would lead, might seem superfluous, though it
may not be deemed equally so to support my own opinion
of their utility by the authority of one well acquainted with
these subjects. LacRroix, in the third volume of his Traité du
Calcul, Diff. et Int. speaking of fractional indices of differen-
tiation, observes, ¢ L’Analyse offre une foule d’expressions
de ce genre, qui tiennent presque toutes aux théories les
plus importantes et les plus délicates, et les réflexions que
j’ai exposées dans le No. g65, me portent a croire que leur
considération peut contribuer beaucoup aux progreés de la
science du caicul.”

ProsLEm XL.
Given the equation
dy (2, 8y) __ di (a2, )
dz — dy ‘
also &’r =z and By =y.
Put «x for @, and By tor y, then the equation becomes
dy (ax,y) __ d¥ (v, By)
dax - dgy
d (e, ) dax 7' __ d (v, B9) [ 4B
hence de ( dr )—‘ dy ( dy )

differentiate this equation relative to y, and the original one

relative to #: then the two results are
a* (ax, y)____ dex 5.1_ a¥ (x> By) zjﬁ_y)‘ }
dedy — dz dy { dy ( dy
* The difficulties which occur in treating functions with negative indices are simi-
lar to those in which they are positive; it may however be observed, that from the
notation we have established, <he following consequences follow :
\Lf" (@ 3) =xand 3H°(x, 3) =y
and generally 3" (2, y) = z and 4™° (2, y) =y
also V° (z, 2) = x and if 4% (2, y) = v, then we have
x=3"" (v ) and also = y 411 (@, V)
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&Y (@, 5) (0 By)

and dedy T dv* )
e £t o)
put By for y, observing that (dBy) { (d[a’y) ?: %

and also dq’(g’y) = dq’(;;y) (%2) , then there will result the

equation

By d* Y (z,y) __ dex &Y (v, 9)
dy dx* T~ dr dy*

This is a partial differential equation from whose solution
¥ (z, y) may be found.

dy (a—z, 3) __ ¥ (5 b—y) «
dy dr

case ar=a—z and By == b — y, and the differential equation
to be solved is

Ex. 1. Given the equation in this

Y@y __ ¥ (%9)
, do* T dy?
and its solution is
Yz, =0(x+y) +o¢(z—)
the two arbitrary functions ¢ and ¢ must be determined 50 as to

fulfil the given equation, for which purpose we have

dy (a—=, y)
=0 (a—a+y)—¢(e—a—y)

d (2, b—y)
and G =g (b o —y) g (—b+r+)
é and qo being respectively the differential coefficients of ¢ and
@, since these two expressions must be equal, we have
p(a—z—y)=0¢(b+2—Y)
and —o@—zFy)=0(—b+T+))
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whose solutions are

6 () = |7, iFI—75 }
and ¢ (w+y)=(e~—b=sz—2) % {2+, fl—-b-—-x-—y}

hence the general solution of the equation
d\L(a*x, » . (w b—y)

is ¢ (2,9) = [ (dz i) {w+y, TF=r—y} +
+ﬂdm—~dy) (@ —b— 22 4 2y) % {a-fy,a—ba—.r-}-y}

Ez. 2. Given the equation
B =) (0]
, yl =
dz i dy
the partial differential equation to be solved is in this case
dy (39) __ a* d (@ y)
dyz - yz dz*

and its solution is

Y@= (5] +e@)
determining ¢ and ¢ so as to fulfil the conditions of the equa-
tion, we have

v =ty 1f1)- (5 {3 ]

ProsrLem XLI.
Given the equation

F{x,}’, Y (2, 9), P (ax,y), &c. ¥ ) LYEnY) g }:o

da” dy*
and let o z =z and B7y =y,
then there may be pq different forms of the function ¢ con-
tained in the general expression ¥ («’z, B'y), r varying from o
to p—1, and s varying from o to g—1.
In the first place it may be observed, that if we substitute

zx for @ in such a quantity as
aml (a3 z, By)
dx®
MDCCEXVI. L1
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we shall have
dn (a* 2, By)
(daz)®

which may always be reduced to the form
d”a]/ 0&‘ Ls B )
fla) =522

If now in the original equatlon we substitute successively
al, &'%,y .« ab=lx for x, and By, 'y, &c. ge—1y for y, we shall
have pg equations containing pq forms of the unknown func-
tion and their differentials. By means of these pq equations
and the differentials of them, we may eliminate all the diffe-
rent forms of the function 4, except one : let the one which
vemains be ¥ (x,7), then we have an equation of partial diffe-
rentials containing only &, y, ¢ (@, y) and their differentials :
and from the solution of this equation ¢ (@, y ) may be found;
a certain number of arbitrary functions will be contained in
this integral ; these must all be determined so as to satisfy the
original equation.

Amongst the numerous questions to which the calculus
of functions is applicable, I shall select a problem proposed by
EvuLER in one of the volumes of the Acta Acad. Petrop. as it
will offer an example of a mode of treating of functional equa-
tions of & nature yet more general than those contained in
this paper.
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ProsrLEm XLII.

Required the nature of a curve such that taking any ordi=
nate

2 “Fd-“\-—-—-

L B C

DB, and drawing a normal at the point D, the next ordinate
CE raised at the foot of the normal shall be equal to that
normal.

Let AB = z, BD =y and y = ¥z be the equation of the

d
curve, then BC = ldi

and DC == \/ 4 (y 2 ) and by the condition of the Problem
we have |
Vit (22 =y (o + )

ol = [ (5T @

This is apparently a very difficult functional equation, and I
am not acquainted with any direct metbod of solving other
‘similar ones. It is in fact only from a peculiar condition which

this equation involves that any solutions have been obtained,
-J/ J'x

hence

the condition to which I allude is, that the quantity ——— does

-J/x d\l/x

not change, when for x we substitute x 4 or expressxec!

in symbols, that
Lle
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: Ja dilx Ja dipw
xp($+ )d \I/( + dr )___qd/wdxlzx,
2 d x -_— »
( z 4 ¥ \l/ ) d;
which may be thus proved dlﬂ"arentiate (@) which gives
x dbx il x diz ba dir
\P( & ,+,°4' d:cp )d. qj (x+¢xdx¢ ) = J)w d{l).l‘ + x d:j/ 4.~ d{zm
and by dividing both sides of this equation by
x ddx @ dya
d (w4 =do 4 d. (‘L =

we have “
‘4, ( + Yo d«Lx) d‘?’ ( » + 'J/mdtixlam) xLx d\]/a (d + d. \Lw ria.lw) et
d { 2 + 11/33;;4‘90) - dZL’ _+“ d («lwd;lxi/w) = d»

From this it appears, that the subnormal is constant in the
same series of ordinates, but it does not follow that it must be

constant in different series; this property, viz. that Yo dba does

dz
‘L“ '”’ will furnish us with a

solution of the equation in question; for (@) becomes by put~
4«3: dxlao

not change when x becomes z -

ting ¢ for
[0 (24 0) = 2T =1
where ¢ may be considered as a constant quantity, the gene-
ral solution of this equation is
b =Vl + ol
ol being an arbitrary function of ¢, therefore the general solu-
tion of eq. {a) is

\?J«%’ — \/‘Z’ \Lm d‘!-]/.%’ (xlzxdtiml/v)
or wy dy o (ydy )

from which diﬂ"erennal equatxon the curves which satisfy the
Problem may be found. It ought, however, to be observed,
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that the constant quantity introduced by integration, is not
perfectly arbitrary, it must be determined so as to make the
equation between @ and y fulfil the equation (4). If for in-

stance, we assume @ ( ) to be equal to a dd , we should find

the equation of the curve to be
= (a4 a)c
¢ being the constant 1‘xtroduced by integration, and on sub«
stituting this value of y in (&) we shall find ¢ = o, so that
y=(@+x)o
Let us suppose a to be infinite and equal to—bz-, then we have
Y= (—i—-}-x)c:b-{-cr:b, since ¢ =0
which is the equation of a straight line parallel to the axis
of the «’s, which in fact agrees with the conditions of the

Problem. If we suppose ¢ (y-dd;y) == @° == a constant quantity
we should find

r=cVy —a*
this value bemg substituted in (a) gives for determining ¢ the
equation

¢ (c41)=o0
whence ¢=0 and ¢==+,/—1, using this latter value we have
’ w:V—liy_ ——\/a._.
which is the equation of the circle, and it is obvxous, that this
curve satisfies the conditions.

It is very necessary to attend to this mode of determining
the constants, as we should otherwise meet in the solution
with many curves which do not satisfy the conditions ; thus
in the last example, the curve is apparently an hyperbola,
but owing to the constant becoming imaginary, it is in fact a
circle.
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To complete the outline of this new method of calculation,
it would be necessary to treat of equations involving two or
more functional characteristics, and to explain methods of eli-
minating all but one of them: these lead to a variety of inte-
resting and difficult enquiries, and will probably be of consider-
‘able use in completing the solutions of partial differential equa-
tions: it would also be proper to consider the maxima and
minima of functions, and to apply to this subject the method
of variations ; these are points of considerable difficulty, and
although I have made some little progress in each of them, T
shall forbear for the present any farther discussion on this
subject. In the mean time, the sketch which I have offered,
and the few applications I have given, are sufficient to point
out the great importance of this method. It should however
be observed, that its applications have only been noticed inci-
dentally ; my object has been to direct the attention of the .
analyst to a new branch of the science, and to point out the
manner of treating it : the doctrine of functions is of so general
a nature, that it is applicable to every part of mathematical
enquiry, and seems eminently qualified to reduce into one
regular and uniform system the diversified methods and
scattered artifices of the modern analysis; from its compre-
hensive nature, it is fitted for the systematic arrangement of
the science, and from the new and singular relations which
it expresses, it is admirably adapted for farther improvements
and discoveries.
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same variable, then dy, d=, dw, . . are expressions proportional to the derived func.-
tions of ¥, z, w, . . whatever may be the variable of which they are common func-

. dy Dy . . — dy _
tions, Hence o D’ and if y be a function of &, or = ¢ (M, then =

D
f)frz) = Dg («) and .-, dy = dr . Dp ().

Moreover, since the derived functions are in the limiting ratio of the increments, so
also are the fluxions, From this consideration we can in the applications of analysis,
practically determine the ratio of the fluxions, when the derived functions are
unknown,

ERRATA,

Page 72, line 20, for parts, read part.

wems 73, line 3, for between, read below.

e 08, line 4 from bottom, dele the comma after A.
101, line 6 from bottom, dele BH.

e 102, line 4, for azes, read axis.

e 164, line 11, dele the comma between m and #.
e 174, line 7, for consisted of, read consisted in.
e ey line last, for m, n, read m, m.

e 191, line 13, for ¢p "z, read ¢ @z. :

— 213, line 14, for J# 4 (%, y), read ¢? ¥ (2, 3).

214, line 10, dele ¢ in an infinite number of ways”.
~—— 224, line 22, for f(a), read f(x).:

—— 220, line 24, for = 2, read = z.

—— 232, line 16, in the denominator, for 1—, read 1.
e ey 1in€ 18, ditto, ditto, for 1=, read 17=.

1 1
d-\‘/x,':'y“) dy (x,-?)
dz
s ey 1in€ 11, for d in both numerator, read d2.
omen e line 13, for (.2.) read & ¢ (i)
Jy y

—— 251, line g, for read



